
Figure 1: Scene complexity stability range. 
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Abstract 
     We discuss real-time issues of scene-complexity in order to frame a technical envelope for stable haptic 
applications.  How large a scene can a haptic application support? Specifically, we try to determine the 
largest stable haptic scene possible when GHOST is used to develop an application. The scene consists of a 
number of non-overlapping primitives or polymesh objects. The scene complexity is measured as a number 
of primitive objects or polygons in polymesh objects that allow stable haptic interactions. 
     The initial data collected indicates that earlier versions of GHOST allow for more complex scenes.  
Each later version seems to reduce the number of objects that can be included in a scene.  For example, 
Version 1.2 allows for inclusion of 1100 non-overlapping spheres in a stable haptic application. Version 2.0 
allows only 770 (almost 30% less) such objects, while version 3.0 allows only 600 (almost 45% less). The 
system used for data collection is a Pentium III 500 MHz computer with 256 MB of RAM.  This machine 
has an nVidia Riva TNT2 Ultra video card with 32 MB of memory and runs Windows NT Workstation 4.0 
with Service Pack 6.0. 
     In order to quantify and understand these observations, we have developed an application that estimates 
the distribution of resources used within the haptic loop; the fractions used by collision detection, graphics, 
and haptic processes. This study provides a method for performance analysis of haptic systems.  Scene 
complexity plays a key role in the creation of haptic applications by providing critical data needed to 
estimate the feas ibility and performance limits for generic haptic environments. It thus should have a broad 
impact on the design of haptic applications. 
 
1. Introduction 
      
     Scene complexity is a measurement on how complex a scene can get and still allow for stable  
haptic interactions. The real-time performance is typically reduced in proportion to the increase in 
the complexity of the scene. In fact, it is well known that the time to compute haptic interactions 
increases with the number of polygons. The approach taken in previous work was to make the 
haptic servo loop rate essentially independent of the number of polygons [1].  However, this 
invariance is obtained only after the contact is made with an object and while the object is being 
touched in the neighborhood of the proxy, while the proxy remains inside the object, making this 
an efficient haptic rendering technique for a single polymesh object. In this paper, the scene 
complexity is measured as a number of primitive objects or polygons in polymesh objects. By 
understanding the limits imposed by the complexity of the scene, we can estimate the feasibility 
and performance limitations of generic haptic environments. 
      First, we consider the greatest 
lower bound (GLB), the highest scene 
complexity for which the application 
always runs with stability and no 
errors.  Next we consider the least 
upper bound (LUB), where some 
instability and errors are allowed to 
occur.  When the number of objects is 
between GLB and LUB the application runs some of the times and produces errors or instabilities 
at other times. When the complexity exceeds LUB of the scene, the application produces errors 
instantly after haptics is initialized.  This establishes a scene complexity stability range for haptic 
applications, as shown in Figure 1. 
 



Figure 2: Spheres in a 
3x3x3 (x,y,z) fashion. 

Figure 3: Sample scene graph representation. 

Figure 4: Avg Hload for GHOST v3.0 
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2. Primitive Objects: Spheres and Box complexity tests 
 
     To establish the scene complexity, our application allows a 
tester to specify the number of primitive objects (in the x, y, and 
z directions) in the scene.  The application automatically creates 
and spaces the objects to prevent them from overlapping as 
shown in Figure 2. The use of non-overlapping objects 
eliminates other factors affecting haptic load (hload) [2]. Hload 
is the time required to complete a haptic loop.  Our application 
records the hload data with 10-3 ms precision and stores it in a 
file.  In order to estimate the time distribution of the graphics, 
haptic, and collision detection tasks [3] within the 1 ms haptic 
loop, hload can be measured in several modes: touching (T) or 
not touching (NT) an object, graphics on (G) or off (NG), and 
removing geometry from the haptic scene graph (NH). By 
removing the geometry branch “hapticScene”, as seen in Figure 
3, the geometry can be eliminated from the haptic scene graph.  The NH mode represents the time 
required to perform other duties of the haptic loop, such as the device position query and the 
scene graph traversal, without having to perform any collision detection on the geometry objects 

themselves.   
     The test data was collected five times 
for a combination of modes between G or 
NG, T or NT, and NH (G_T, G_NT, 
NG_T, NG_NT, G_NH, NG_NH). 
Starting with 8 (2x2x2) objects, the 
number of objects is increased by one in 
each direction (e.g. next test has 9(3x3x3) 
objects), until an error is generated for 
exceeding the 1 ms time constraint of the 
haptic duty cycle.  At this stage, the 
number of objects is slowly decreased to 
identify the GLB. Next, the number of 

objects is increased to find the LUB, a point at which the application instantly produces an error. 
     Tests were conducted using three different versions of GHOST (1.2, 2.0, and 3.0) to evaluate 
performance changes from version to version. The GLBs and LUBs for the different versions are 
summarized in Table 1.  The GLB between version 1.2 and 2.0 is reduced by about 30% and 
reduced by another 22% between versions 2.0 and 3.0 for spheres.  Test results for version 3.0 are 
displayed in Figure 4.  From the tests, we calculated that on average displaying graphics 
increased the hload by about 2-5% and touching an object increased it by about 7-18%.  Our test 
results indicate that earlier versions of GHOST allowed for more complex scenes.  Each 

subsequent version reduced 
the number of objects that 
could be included in the 
scene for a stable haptic 
application. The GLB 
between versions 1.2 and 2.0 
is reduced by about 27% and 
is further reduced by 25% 
between versions 2.0 and 3.0 
for boxes.  In general our test 
show that hload increases 



fairly linearly as objects are added to the scene 
graph for every version of GHOST. Clearly, 
overhead was introduced from version to version.  
In case of no graphics and no haptic scene 
(NGNH), the average hloads were .05ms, .08ms, 
and .09ms for versions 1.2, 2.0, and 3.0 
respectively.  The data represents the time 
required to perform basic duties of the haptic loop, 
such as device position query and scene graph 

traversal for nodes other than geometry. 
     The hload percentage for collision detection is about 82-83% for spheres and 89-90% for 
boxes, for graphics it is about 3% for both spheres and boxes, and for touching an object it is 
about 11-13% for spheres and 6-8% for boxes.   
 
3. Polymesh objects complexity tests  
 
     For a single polymesh object, a box made up of length, 
width, and height segments was used.  These segments 
define the resolution of the object and determine the 
number of polygons that form it.  The number of vertices 
(nv) and faces (nf) can be calculated as follows, where l, w, 
and h are the number of length, width, and height segments 
respectively: 
       nv = 2?  [(l+1)(h+1) + (w-1)(h+1) + (w-1)(l-1)] 
       nf = 4?[(l?h) + (w?h) + (w? l)] 
Figure 5 is a wire frame rendering of the box showing how 
the object is made of triangular polygons.  Starting with a 
10x10x10 segment (602 vertices, 1200 polygons) box, the numbers of segments (length, width, 
and height) are increased by 10 for each test.   
Figure 6 displays the average results of five test runs with GHOST version 3.0.  According to 
these results, the hload varied by very little when the polygon count increased for a single object.  
However, when polygon counts exceeded about 120k, GHOST started to produce random errors, 
even though hload was under 0.2ms.  From these results, for a single object with no overlapping 
polygons, we found the GLB and LUB to be 120k and 235k polygons respectively.  

          For multiple polymesh 
objects, the number of 
polygons is kept consistent 
with each increment step in the 
previous test.  Multiple 
10x10x10 segment boxes, each 
containing 1,200 polygons, are 
used to form the polygon count 
for each test run. The vertex 
count was greater in the 
multiple polymesh objects test 
than in the single polymesh 

object test by 2?(N-1) vertices, where N is the number of boxes.  The increase in hload is 
relatively  linear as objects are added to the scene, Figure 7.  Further testing gave the GLB and 
LUB to be 35 objects (42k polygons) and 49 objects (58.8k polygons) for these polymesh objects 
with non-overlapping polygons.  The limit of 1ms was exceeded for 49 objects, therefore not 
allowing for the true value to be recorded.  However, we did notice that with only 35 objects, the 

Version Object GLB LUB 
Box 1100 1188 1.2 
Sphere 1100 1200 
Box 800 847 2.0 
Sphere 770 847 
Box 600 729 3.0 
Sphere 600 729 

Table 1: GLB and LUB for GHOST versions 

Figure 6: Avg test results for increasing polygons for one object 
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Figure 5: Polymesh box 



number of polygons from the single 
polymesh object test was reduced 
from 120k to 42k in the multiple 
polymesh objects test.  Even with an 
additional 78k polygons the 
maximum hload was about 80% 
less.  
     We estimate that on the average, 
collision detection for the polymesh 
objects is about 71-77%, while 
graphics is about 2-8%, and 

touching the object is about 19% of the hload.  Tests also showed that the graphics increased 
hload dependent of the number of polygons.  Touching the polmesh, however, raised hload on 
average by about 26%. 
 
4. Conclusion 
 
     In this paper, we addressed scene complexity issues based on the maximum number of 
primitive objects as well as the maximum number of polygons for single and multiple polymesh 
objects that allow stable haptic interactions when using GHOST.  We discussed the idea of 
specifying a scene complexity stability range.  This range was defined by the greatest lower 
bound (GLB) and the least upper bound (LUB).  GLB is the highest scene complexity for which 
the application always runs with stability and produces no errors.  The LUB is a point at which 
the haptic application will no longer run and produces errors instantly after haptics is initialized.  
When the scene complexity is between GLB and LUB the application runs, but is unstable and 
prone to errors.  We were also able to estimate the percentage of hload used for the collision 
detection, graphics, and user touching an object.   
     Though these initial tests gave us complexity bounds for some haptic applications, more tests 
need to be performed in order to estimate the feasibility and performance expectations for a 
general haptic environment that involves many other levels of complexity.  For example, other 
tests results indicate that hload increases if the point of contact is within multiple bounding boxes 
and increases even more if the point is touching multiple objects.  Tests also show that there can 
be different hloads within a single polymesh object, depending on its topology (eg. corner points, 
overlapping polygons, etc.).  Understanding scene complexity limits plays a key role in creation 
of haptic applications by providing critical data needed to estimate the feasibility and 
performance for generic haptic environments. 
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Figure 7: Avg test results for increasing number of objects 


